Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
researchsquare; 2024.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3877429.v1

ABSTRACT

Secondary bacterial pneumonia (2°BP) is associated with significant morbidity following respiratory viral infection, yet mechanistically remains incompletely understood. In a prospective cohort of 112 critically ill adults intubated for COVID-19, we comparatively assessed longitudinal airway microbiome dynamics and studied the pulmonary transcriptome of patients who developed 2°BP versus controls who did not. We found that 2°BP was significantly associated with both mortality and corticosteroid treatment. The pulmonary microbiome in 2°BP was characterized by increased bacterial RNA load, dominance of culture-confirmed pathogens, and lower alpha diversity. Bacterial pathogens were detectable days prior to 2°BP clinical diagnosis, and in most cases were also present in nasal swabs. Pathogen antimicrobial resistance genes were also detectable in both the lower airway and nasal samples, and in some cases were identified prior to 2°BP clinical diagnosis. Assessment of the pulmonary transcriptome revealed suppressed TNFa signaling via NF-kB in patients who developed 2°BP, and a sub-analysis suggested that this finding was mediated by corticosteroid treatment. Within the 2°BP group, we observed a striking inverse correlation between innate and adaptive immune gene expression and bacterial RNA load. Together, our findings provide fresh insights into the microbial dynamics and host immune features of COVID-19-associated 2°BP.


Subject(s)
Respiratory Tract Infections , COVID-19 , Pneumonia, Bacterial
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-380803.v1

ABSTRACT

Secondary bacterial infections, including ventilator-associated pneumonia (VAP), lead to worse clinical outcomes and increased mortality following viral respiratory infections including in patients with coronavirus disease 2019 (COVID-19). Using a combination of tracheal aspirate bulk and single-cell RNA sequencing (scRNA-seq) we assessed lower respiratory tract immune responses and microbiome dynamics in 28 COVID-19 patients, 15 of whom developed VAP, and eight critically ill uninfected controls. Two days before VAP onset we observed a transcriptional signature of bacterial infection. Two weeks prior to VAP onset, following intubation, we observed a striking impairment in immune signaling in COVID-19 patients who developed VAP. Longitudinal metatranscriptomic analysis revealed disruption of lung microbiome community composition in patients with VAP, providing a connection between dysregulated immune signaling and outgrowth of opportunistic pathogens. These findings suggest that COVID-19 patients who develop VAP have impaired antibacterial immune defense detectable weeks before secondary infection onset.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.23.21253487

ABSTRACT

Secondary bacterial infections, including ventilator associated pneumonia (VAP), lead to worse clinical outcomes and increased mortality following viral respiratory infections. Critically ill patients with coronavirus disease 2019 (COVID-19) face an elevated risk of VAP, although susceptibility varies widely. Because mechanisms underlying VAP predisposition remained unknown, we assessed lower respiratory tract host immune responses and microbiome dynamics in 36 patients, including 28 COVID-19 patients, 15 of whom developed VAP, and eight critically ill controls. We employed a combination of tracheal aspirate bulk and single cell RNA sequencing (scRNA-seq). Two days before VAP onset, a lower respiratory transcriptional signature of bacterial infection was observed, characterized by increased expression of neutrophil degranulation, toll-like receptor and cytokine signaling pathways. When assessed at an earlier time point following endotracheal intubation, more than two weeks prior to VAP onset, we observed a striking early impairment in antibacterial innate and adaptive immune signaling that markedly differed from COVID-19 patients who did not develop VAP. scRNA-seq further demonstrated suppressed immune signaling across monocytes/macrophages, neutrophils and T cells. While viral load did not differ at an early post-intubation timepoint, impaired SARS-CoV-2 clearance and persistent interferon signaling characterized the patients who later developed VAP. Longitudinal metatranscriptomic analysis revealed disruption of lung microbiome community composition in patients who developed VAP, providing a connection between dysregulated immune signaling and outgrowth of opportunistic pathogens. Together, these findings demonstrate that COVID-19 patients who develop VAP have impaired antibacterial immune defense weeks before secondary infection onset.


Subject(s)
Pneumonia , Critical Illness , Bacterial Infections , Severe Acute Respiratory Syndrome , Pneumonia, Ventilator-Associated , Respiratory Tract Infections , COVID-19
4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-141578.v1

ABSTRACT

We performed comparative lower respiratory tract transcriptional profiling of 52 critically ill patients with the acute respiratory distress syndrome (ARDS) from COVID-19 or from other etiologies, as well as controls without ARDS. In contrast to a cytokine storm, we observed reduced proinflammatory gene expression in COVID-19 ARDS when compared to ARDS due to other causes. COVID-19 ARDS was characterized by a dysregulated host response with increased PTEN signaling and elevated expression of genes with non-canonical roles in inflammation and immunity that were predicted to be modulated by dexamethasone and granulocyte colony stimulating factor. Compared to ARDS due to other types of viral pneumonia, COVID-19 was characterized by impaired interferon-stimulated gene expression (ISG). We found that the relationship between SARS-CoV-2 viral load and expression of ISGs was decoupled in patients with COVID-19 ARDS when compared to patients with mild COVID-19. In summary, assessment of host gene expression in the lower airways of patients with COVID-19 ARDS did not demonstrate cytokine storm but instead revealed a unique and dysregulated host response predicted to be modified by dexamethasone.


Subject(s)
Respiratory Distress Syndrome , Pneumonia, Viral , Critical Illness , COVID-19 , Inflammation
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.28.20248552

ABSTRACT

We performed comparative lower respiratory tract transcriptional profiling of 52 critically ill patients with ARDS from COVID-19 or other etiologies, or without ARDS. We found no evidence of cytokine storm but instead observed complex host response dysregulation driven by genes with non-canonical roles in inflammation and immunity that were predicted to be modulated by dexamethasone. Compared to other viral ARDS, COVID-19 was characterized by impaired interferon-stimulated gene expression.


Subject(s)
COVID-19 , Inflammation , Critical Illness
SELECTION OF CITATIONS
SEARCH DETAIL